Вверх

Сервисный центр ТАРДИС

Ремонт и обслуживание компьютерной техники

Цены на ремонт ноутбуков и компьтеров в сервисном центре ТАРДИСРемонт развлекательных аппаратов в Мастерской ТАРДИСТардисХост - хостинг, регистрация доменов, VPSПодключение облачной ip-телефонииСоздание и продвижение сайтов в Студии Тардис

8 4922 53-93-00
help@nulltardis33.ru

Реклама

Статистика

Яндекс.Метрика

 

 

 

Ученые из Google нашли замену нейросетям. Машины смогут видеть объекты в 3D

iStock 622767436 front235235f

В 2012 году информатик Джеффри Хинтон вместе с двумя студентами Торонтского университета разработал систему, которая могла анализировать тысячи фотографий и самостоятельно учиться идентифицировать объекты на картинках. Затем нейронные сети распространились по всей технологической отрасли. Однако у нейросетей есть свои ограничения, поэтому Хинтон представил альтернативный математический метод — капсульные сети. О разработке рассказывает The New York Times.

Если обычную нейросеть натренировать на изображениях кружек, на которых они будут видны только сбоку, то алгоритм не сможет распознать перевернутую чашку. Метод капсульных сетей, который Хинтон предлагает вместе с исследователем Google Сарой Сабур, позволяет приблизить «зрение» системы к человеческому: в отличие от нейросетей, капсульные сети могут идентифицировать изображения в трех измерениях.

Ученые уже опубликовали исследование, в котором показали, что в определенных ситуациях их метод может точнее распознавать объекты, изображенные с незнакомых для алгоритма ракурсов. Капсульные сети пытаются имитировать сеть нейронов в мозге человека более сложным и структурированным образом, чем традиционные нейросети.

Люди не могут распознать объект, посмотрев лишь на одну или на несколько его сторон. Чтобы создать мысленный образ всего объекта, он должен быть помещен в трехмерное пространство. Поэтому многим людям не удается справиться с различными головоломками (The New York Times приводит в пример игру, в которой необходимо собрать пирамиду из двух блоков необычной формы). Подобные головоломки ставят людей в тупик из-за того, что головоломка не дает им представить, как должен выглядеть готовый объект в трехмерном пространстве.

Идея распознавания объектов обучаемыми машинами восходит к 1950-м годам, однако концепция нашла реальное применение лишь в последнее время. Это произошло благодаря увеличению вычислительных мощностей и большим объемам данных в сети. В последние пять лет нейросети начали использовать в цифровых помощниках в смартфонах и в автономных роботах. Однако эти решения пока не могут наделить машины настоящим интеллектом.

Орен Эцион, исполнительный директор Института искусственного интеллекта Пола Аллена (Allen Institute for Artificial Intelligence), обвинил индустрию искусственного интеллекта в близорукости: нынешние усилия ученых на создании нейросетей в долгосрочной перспективе навредят прогрессу искусственного интеллекта. А Эрик Хорвиц, который занимается технологией ИИ в Microsoft заявил, что нейросети и связанные с ними методы — лишь небольшие шаги по сравнению с теми технологиями, которые появятся в ближайшие годы. «Сейчас то, чем мы занимаемся, — нечто вроде алхимии, а не наука», — сказал он.

Сам Хинтон признает, что его нынешний проект показал только предварительные результаты. Однако он рассчитывает, что капсульные сети смогут найти применение в различных ситуациях и ускорить работу над компьютерным зрением и обработкой естественного языка в виртуальном собеседнике. По его мнению, эта технология сможет помочь другим сферам искусственного интеллекта, несмотря на скептицизм среди его коллег. Хинтон напомнил, что пять лет назад многие скептически относились к нейросетям.

Джеффри Хинтон и студенты Торонтского университета, которые участвовали в разработке нейросетей, начали работать в Google в 2013 году. В 2017 году Хинтон открыл лабораторию Google по изучению технологий искусственного интеллекта в Торонто.

Популярные видеобзоры

Обзор планшета Samsung GALAXY Tab E SM-T561

Планшет Самсунг Гэлэкси Таб Е - обзорВ нашей мастерской Тардис находится очередное устройтво от компании Самсунг. На это раз это 10 дуймовый планшет Samsung GALAXY Tab E SM-T561.

Мы протестируем его, проверим его работоспособность при работе в глобальной сети Интернет и скорость загрузки 3Д игр и сообственно сама игра...

Подробнее...

Обзор ноутбука Lenovo L340-15IWL (81LG00MSRK)

Skrin lenovo 1

На сегодняшнем видеообзоре у нас находится ноутбук Lenovo L340-15IWL(81LG00NSRR). Этот ноутбук мы купили для одного из наших клиентов. Упаковка ноутбука классическая, почти у всех ноутбуков одинаковая.

Подробнее...

Заказ обратного звонка

Перезвоним через 30 секунд.